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Received 14 May 1987 

Abstract. We discuss properties of the set of scattering singularities in regions of irregular 
scattering. We show how a symbolic organisation of the set can be used to determine the 
fractal dimension and the scaling function. This yields information on the distribution of 
Lyapunov exponents of bounded orbits. The specific model studied is the motion of a 
particle in a plane, elastically reflected by three circular discs centred on the corners of an 
equilateral triangle. 

1. Introduction 

In a number of systems in celestial mechanics (Petit and HCnon 1986), molecular 
dynamics (Noid et al 1986), potential scattering (Eckhardt and Jung 1986) and 
hydrodynamics (Manakov and Shchur 1983, Eckhardt and Aref 1987), irregular scatter- 
ing has been observed. The characteristic feature of irregular scattering is a clustering 
of initial conditions that lead to asymptotic trapping in the interaction region. Though 
still a set of measure zero and therefore in a sense irrelvant, these singularities are 
dressed with strong oscillations in the scattering angle and impact parameter and 
therefore make themselves felt in their immediate vicinity. In this paper, we continue 
our investigation of irregular scattering with a study of the fractal properties of the 
set of singularities. 

Noid et aI (1986) computed the fractal dimension of the graph of the outgoing 
scattering angle as a function of the impact parameter and found it to be close to two. 
Their study was made difficult by the large computational resources needed. HCnon 
(1987) has been able to derive analytically the fractal dimension for a piecewise linear 
scattering model. We believe, however, that piecewise linear models are exceptional 
in that they produce homogeneous fractals with trivial scaling functions. One of the 
purposes of the present contribution is to show that the set of singularities is a non-trivial 
fractal. To circumvent computational and genericity problems, we propose to study a 
billiard problem. As we will see, this allows us to approximate the set of scattering 
singularities quite accurately. 

This model still has its shortcomings. Billiards are often used to illustrate completely 
chaotic dynamical systems (namely Bunimovich’s stadium billiard or Sinai’s billiard 
on a torus). The model we study below is of this type, if turned into a bound system 
by closing configuration space sufficiently far from the centre by either a circle or a 
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rectangular box. In this sense, the results presented here are typical of scattering off 
‘completely chaotic objects’. It could be that for smooth potentials, clustering of islands 
near boundary circles resulting in an increased number of unstable orbits is important. 
This is outside the present model and needs to be investigated separately. 

In $ 2, we describe the model. We then study the fractal dimension and the scaling 
behaviour in 0 3. In P 4 we characterise the set of scattering singularities as a set 
invariant under a topological mapping of phase space onto itself. This we use in 9 5 
where we discuss the relationship between instability exponents and fractal dimension. 
We conclude with a summary in § 6. 

2. The model 

The model we study here is a discontinuous variant of the smooth potentials of Eckhardt 
and Jung (1986) and Jung and Scholz (1987). It consists of three circular discs centred 
on the corners of an equilateral triangle (length of side 2 a ) .  Motion is confined to 
the exterior of the discs with the understanding that at collisions with the discs the 
particle is reflected elastically. Figure 1 shows the geometry and an orbit for illustration. 
For later use we will1 label the discs clockwise, beginning in the upper right. 

Figure 1. The scattering geometry with the three discs and  a reference orbit with symbol 
sequence 123 13 12. 

To describe the scattering behaviour of the model we introduce the ingoing and 
outgoing angles c#+~ and 4,,, and the corresponding impact parameters bin and bo,,, 
defined with respect to the centre of mass of the triangle. For (almost) any fixed initial 
angle there are three intervals in impact parameter in which the particle collides with 
one of the discs. For definiteness, we now specify an initial angle din = 1.0 rad and 
focus on collisions beginning with disc 1. The corresponding interval will be called 
C, . The salient feature of irregular scattering is the existence of trajectories that stay 
within the ‘interaction’ region for arbitrarily long times. For the billiard model this 
means an infinite number of collisions. We therefore begin by asking in what intervals 
does the particle collide at least twice? Since the scattering data after one collision 
are smooth functions of the initial data, it suffices to determine the impact parameter 
for trajectories that are tangential to the other discs. This gives two intervals, labelled 
C12 and CI3, in which the particle collides first with disc 1 and then with disc 2, or 
first with disc 1 and then with disc 3, respectively. Similar reasoning allows us to 



Fractal properties of scattering singularities 5973 

determine intervals Clzl ,  C,23, Cl3, and C,,, in which the particle collides at least 
three times. The general picture should now be clear: at each ‘generation’ n of collision 
sequences, there are 2”-’ disjoint intervals in impact parameter leading to at least n 
collisions. They can be labelled uniquely by the symbols ( i ,  , i 2 ,  . . . , i n )  of the collision 
sequence of a typical orbit in the interval: i, stands for the number of the disc for the 
first collision, i, for that of the second, and so forth. Of course, two consecutive 
symbols must not be identical. Other than that, any sequence can be realised. 

The set of singularities is then given by 

where S,  denotes the set of all allowed symbol sequences of length n and i is a vector 
of symbols. The construction of this set is very similar to that of the usual ternary 
Cantor set. 

3. Fractal dimension and scaling function 

The simplest measure of the fractal properties of this set is its fractal dimension dF, 
defined by the asymptotic scaling behaviour of the number N ( E )  of intervals of size 
E needed to cover the set: 

N ( E ) = E ~ F  as E + O .  (2) 
In the case at hand, a slight modification suggests itself. It is easier to determine the 
total area A, of all intervals of generation n and its scaling behaviour. Figure 2 shows 
data for up to ten generations and a fit A ,  = e-yn. As an example, for a radius r = 0.7 
one finds y = 1.42. If E ,  denotes the size of a typical interval for the covering at 
generation n, then 

N (  E , )  = &:F f 2 n - 1  (3) 

n 

Figure 2. The total area of the intervals at generation n against the number of the generation. 
The different curves correspond to the following radii of discs (from top to bottom): 1.0, 
0.9,0.8, 0.7,0.6,0.5,0.4 and 0.3. The different symbols at radius 0.7 correspond to different 
initial angles. 
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by the definition of N and the observation on the number of intervals made earlier. 
This may now be solved for E , .  Given N ( E , ) ,  the area of the covering is 

A(&,)5:&,N(E,)5:&EdFrr=e-yn. (4) 

Solving for d,, one finds 

log 2 
dF=- 

log 2 +  y 

For our example with radius r = 0.7 and the data from figure 2, one finds dF = 0.324. 
The data also suggest that d, is insensitive to the initial angle. We will return to this 
point below. 

For our further analysis of the set of singularities, it will be convenient to replace 
the ternary symbol sequences with restrictions by binary symbol sequences without 
restrictions. This is also suggested by the binary splitting of the intervals in going from 
one generation to the next. We associate with any (clockwise) collision sequence 1 + 2, 
2 + 3 or  3 + 1 the symbol L and with any (counter-clockwise) collision sequence 1 +3 ,  
2 +  1 or 3 + 2  the symbol R. Given that the first collision occurs with disc 1, this 
relabelling uniquely specifies a collision sequence. As an example, the sequence from 
figure 1, 1231312, now becomes RRRLRR. 

The fractal dimension as discussed before is a global, averaged quantity of the 
fractal set. Much more detailed information may be obtained from the thermodynamic 
formalism for strange sets, in particular the scaling function a ( t )  (see Benzi et a1 
(1984), Halsey et a1 (1986) and Feigenbaum et a1 (1986) for details). Let E ,  denote 
the binary symbols as defined in the last paragraph and let / ( E , , ,  . . . , E ~ )  be the 
length of the interval in which a trajectory beginning with e l , .  . . , E ,  can be found. 
Then the scaling function E , ,  . . . , E ~ )  is defined as 

i.e. as the ratio of the length of the daughter interval in generation n + 1 to that of the 
mother interval in generation n. Trivial fractal sets, like the standard f Cantor set have 
trivial scaling functions depending only on where one is going, a = Less trivial 
sets have memory, a = ( + ( E , + ~ ,  E , ,  E , - ~ ,  . . .), all the way up to sets like the attractor at 
the period 2" accumulation point in period doubling, which has an  infinite number 
of scales (Aurell 1987). The more complicated the organisation of the fractal set, the 
longer the memory in a. For the set of scattering singularities, we find the scaling 
function a( t )  shown in figure 3, where 

n 

t = 2 - "  c ek2k-' 
k = l  

(7) 

and where the numerical values of 0 and 1 have been assigned to the symbols L and 
R, respectively. (Note that E ,  carries the largest weight.) The figure shows that in 
order to get a meaningful approximation to the scaling function, one needs to take 
into account at least a one-step memory, i.e. two symbols. Thus, CT = a(&,, E ~ - ~ ) ,  where 
roughly 

(8) U (  L, L )  = U (  R, R )  < a( L, R )  = a( R, L ) .  

This is in agreement with intuition, which tells us that it is easier for the particle to 
be reflected back to where it came from (the elements a ( L ,  R )  and a ( R ,  L ) )  than it 
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Figure 3. The scaling functions as determined for the fractal set at radius 0.7. The results 
from approximations using 6 ,  7 ,  8, 9 and 10 generations have been superimposed. Devi- 
ations are below the resolution of the linewidth. 

is for it to be deflected to the third disc. The numerical calculations also show that 
u( t )  settles to its asymptotic behaviour after about five generations, and that the set 
as determined from generations 2 and 3 satisfies relationship (8) quite well. 

4. The topological origin of the fractal 

We now turn to a global discussion of the origin of the Cantor set structure. In figure 
4 we show the phase space near disc 2. The angle 8 is the polar angle of the point of 
collision on the circumference of the disc and C$ is the ingoing direction of the velocity. 
All points within region A will be reflected towards disc 1. The width of this region 
is given essentially by the opening angle of the second disc as seen from the point 

n 
7 R 3n - 

7 e 2 

Figure 4. Phase space near one disc. The angle 4 is the angle of the ingoing velocity and 
the angle 0 determines the point of impact along the boundary of the disc. Regions A and 
B contain all the points mapped onto discs 1 and 3, respectively, upon reflection. Regions 
C and D mark those parts of phase space that can be reached from other spheres. This 
construction is used in the text to explain the fractal nature of the scattering singularities. 
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determined by 8, unless the second disc has not risen above the horizon; the latter 
case leads to the linear boundary segments. Similarly, all points in region B will be 
reflected towards disc 3. The domain is derived from A, shifted by 7r/3 in both 
coordinates. In the binary notation introduced before, region A corresponds to symbol 
L and  region B to symbol R. 

Because of the threefold symmetry of the disc arrangment, phase space diagrams 
for the other two discs are simply shifted images of the one shown here: a shift by 7~ 

results in the diagram for discs 1 and one by - 2 ~ r / 3  results in the diagram for disc 3. 
We also need the image of all points deflected to disc 2 from discs 1 or 3. These 

are shown as regions C and D. Again, it is sufficient to determine one and  to obtain 
the other by translation. The important feature is that all four regions overlap. As we 
will now discuss, this leads to the Cantor set structure. Symmetry allows us to confine 
ourselves to  one disc and  one phase space diagram. Again the binary coding will 
prove the most convenient. The full scattering trajectory can be retrieved, if the shifts 
as determined from the symbol sequence are taken into account. 

So we start from two regions A and B containing initial conditions leading to 
collisions with other discs. The images of these sets are C =f(A)  and  D =f(B) ,  where 
the function f stands for the action of one scattering process. We now associate 
symbolic sequences with these sets. Initial conditions in A and f (A)  lead to counter- 
clockwise motion, so they correspond to the symbol L, whereas B and f(B),  leading 
to clockwise motion, correspond to the symbol R. Any point in the intersection of, 
say, A n f ( B )  will therefore have a symbol sequence LR; similarly for the others as 
shown in figure 4. The second iterate of the mappingfis only defined on the intersection 
regions. They are smaller than the original domains, so their image is smaller also. 
This contraction of the domain of definition with an increasing number of required 
collisions is familar from the horseshoe construction (Moser 1973). There one also 
has a set and  a mapping so that the image and the domain of the mapping intersect. 
An infinite number of iterations is only possible in the intersection of the set and  ail 
its iterates, typically yielding a Cantor set. 

The way our scattering initial conditions are set up, we study a cross section of the 
resulting Cantor set. Invariance of the scaling behaviour, the scaling function and the 
f ( a )  curves (see below) suggests that all cross sections look alike. 

5. Instability of orbits and fractal dimension 

The intersection of all forward and backward iterates of the mapping contains all 
bound orbits. Since all (binary) symbol sequences can be realised, these bound orbits 
need not be periodic. Linearisation of the motion perpendicular to the orbits allows 
one to determine the Lyapunov characteristic exponents. In our case, they will always 
be positive, since the orbits are unstable. Suppose we start with a small square in the 
phase space near one disc, containing bound orbits; the square should be sufficiently 
small to allow at least N iterations for all points in it. Then at each step, the expansion 
rate of the square will roughly be given by an  average over the Lyapunov exponents 
of the bound orbits contained in it. But this rate is also an estimate of how much of 
the iterated square will intersect the original square. The conclusion to be drawn from 
this line of reasoning is that the width of the intervals allowing N collisions is related 
to the stability properties of bound orbits. As the number of collisions increases, the 
collision orbit follows bound orbits for ever longer times, so in the limit the distribution 
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of scales in the fractal reflects the distribution of Lyapunov exponents in the bound 
motion. 

All of them are unstable. The mapping is area contracting, so none can have an 
island of stability to go with it. Locally, i.e. near a given bounded orbit, the contraction 
rate is given by the instability of the orbit. Therefore it seems reasonable to suggest 
that locally the fractal dimension of the set is determined by the instability of the orbits. 

To check this idea locally is very difficult since, given a scattering trajectory and 
its finite symbol sequence, it is not at all clear to which periodic or non-periodic 
bounded orbit it belongs. Therefore, the following test was performed. For any interval, 
we computed the orbit in its centre, and determined the sensitivity of the outgoing 
angle and impact parameter on the initial impact parameter, A+,,, = &Abi, and 
Ab,,, = AbAbin. The products A,/ and hbl formed out of the sensitivities of the orbit 
and the length of the intervals was constant within any generation and the same 
constant for different generations for systems with the same radius of the discs, 
independent of the initial angle. The variations of these numbers were about 0.01%, 
compared to variations in the size of the interval of up to 50%. We take this to be 
very good numerical evidence for the proposed connection between the size of the 
intervals and the fractal structure of the set. 

Taking this for granted, we can argue in the reverse. I f  we know details of the 
fractal organisation of scattering singularities, we get information on the stability 
properties of bounded orbits. A convenient way to present this information is the 
function f( a) introduced by Halsey et aI (1986). The Lyapunov exponents are related 
to a and f ( a )  is the fractal dimension of the set of bounded periodic orbits with that 
Lyapunov exponent. 

As discussed in the introduction of Halsey et a1 (1986), the variable a is determined 
from the generalised entropies 

where 

x(4) = c PP 

via 

Assuming that at generation n, all periodic orbits carry the same weight, the probabilities 
become equal to p i  = 2-("-'), so that x ( q )  = 2 - ( q - ' ) ( " - ' )  . Let A denote the Lyapunov 
exponent on which we wish to concentrate. Then the length 1 of the intervals decreases 
like I = e-'("-'), so that 

0, =log 2/log A. 

Thus, 

a ( q )  = log 2/log A. (13) 
This is the required relationship between the Lyapunov exponent and the parameter 
a. Figure 5 now shows an example of f ( a )  for a radius r = 0.7. Good convergence is 
achieved after four generations. Note the finite range of a values over which f ( a )  
does not vanish: it indicates that all Lyapunov exponents fall in a finite interval. 
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a 

Figure 5. The singularity funct ionf(a)  for the fractal set at radius 0.7 

6. Conclusions 

For the billiard model studied here, we have determined the fractal dimension and  
the scaling function for the set of scattering singularities. Good convergence was found 
with only 10 generations in the symbolic organisation of the set. The scaling function 
may be approximated qualitatively with only four scales, and  16 are enough to 
reproduce it quantitatively. Clearly, the scattering singularities lie in a multifractal 
set. The fractal dimension was found to be linked to the stability properties of the 
bound orbits asymptotically approached by the scattering trajectory: the more unstable 
these orbits, the smaller the fractal dimensions. Different orbits can have different 
Lyapunov exponents. The range of Lyapunov exponents can be described using the 
singularity function f( a). 

These are the main results of the present work. We conclude with a conjecture on 
potential scattering. There, it is conceivable that some bounded orbits have just become 
unstable, i.e. have very small Lyapunov exponents. This corresponds to large values 
of a. The f ( a )  curves then extend to very large values of a and perhaps are rather 
flat near the maximum, making it very difficult to determine the fractal dimension 
(which is given by the maximum). This could explain some of the numerical difficulties 
with smooth potentials. 
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